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PHYS 3033 GENERAL RELATIVITY PART I 

Chapter 3 

The four dimensional space-time, four-vectors and four-tensors 

       

“I have become imbued with great respect for 

mathematics, the subtler part of which I had, in my 

simplemindedness, regarded as pure luxury.” 

       Albert Einstein (1916)  

3.1 Mathematical introduction: vector spaces 

 

In this lecture we shall introduce the concept of space-time as a four-dimensional 

vector space 1 . Since we live in a three-dimensional Euclidean space, we have a natural 

tendency to think of this as unique and special. But vectors and many concepts associated 

with them are not limited by the dimensionality of the space.   In the following we denote 

the number of dimensions of a space by d . Then the hierarchy of the vector spaces is as 

follows 2 : 

2=d  A vector is an ordered pair of numbers, ( )21 ,VVV =
ρ

. For example, the position 

vector can be written as ( )yxr ,=
ρ

, where x  and y have their usual meanings as distances 

from the origin along mutually perpendicular coordinate axis. 

 
We define the scalar product (or inner product) of the vectors as 

 .222 ryxyyxxrr =+=+≡⋅
ρρ

        

Hence the scalar product gives the length (absolute value) of a vector. Since the length 

of a vector is a scalar quantity, it has the same value in any frame of reference. 

Therefore the absolute value of a vector is invariant with respect to rotations and 

translations of the reference frame. 2r  is also known as the distance between two points. 

3=d  A vector is an ordered triad or pair of numbers, ( )321 ,, VVVV =
ρ

. The position 

vector is ( )zyxr ,,=
ρ

, and its scalar product with itself is 

 .2222 rzyxzzyyxxrr =++=++=⋅
ρρ

 

4=d In four-dimensions a vector is an ordered set of four numbers, ( )4321 ,,, VVVVV =
ρ

. 

The four-dimensional position vector is ( )uzyxs ,,,=
ρ

, where now we have four 

Cartesian coordinates, corresponding to the four rectangular axes. The scalar product is 

 .22222 suzyxuuzzyyxxss =+++=+++=⋅
ρρ

    (1) 



 2

nd =  A vector is an ordered set of n numbers, ( )nVVVVVV ,...,,,, 4321=
ρ

, for any integer 

such that ∞≤≤ n2 . The position vector may be written as ( )nxxxxs ,...,,, 321=
ρ

 and the 

inner product takes the form 

 2
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iin ===++++=⋅ ∑∑
==

ρρ
.    (2) 

The vector spaces in which the distance between two points is described according to 

the prescription (2) are called Euclidian spaces. In a Euclidian space the distance is 

always well-defined and greater than zero, 02 ≥s . 

 

3.2 The Minkowskian space-time continuum 

 

In Newtonian physics, space and time are considered as separate entities and whether 

or not events are simultaneous is a matter that is regarded as obvious to any observer. In 

Einstein's concept of the physical universe, two observers in relative motion could 

disagree regarding the simultaneity of distant events. 

As we have seen in the previous Chapter, in special relativity the quantity 

 
222222 zyxtcs −−−=         (3) 

 

is invariant with respect to the Lorentz transformations in the ( )xct,  plane, and also with 

respect to translations and rotations in the ( )zyx ,,  plane. Eq. (3) is very similar to Eq. (2), 

describing the distance between two points in a four-dimensional Euclidian vector space, 

with ct having the dimensions of length. This analogy led the German mathematician 

Hermann Minkowski  (1864-1909) to unify space and time in a single framework, called 

space-time. Space-time provides the true theater for every event in the lives of stars, 

atoms and people.  

 

 

 

 

Hermann Minkowski taught at several universities, Bonn, 

Königsberg and Zurich. In Zurich, Einstein was a student 

in several of the courses he gave. By 1907 Minkowski 

realized that the work of Lorentz and Einstein could be 

best understood in a non-Euclidean space. He considered 

space and time, which were formerly thought to be 

independent, to be coupled together in a four dimensional 

'space-time continuum'. Minkowski worked out a four-

dimensional treatment of electrodynamics. The space-time 

continuum provided a framework for all later 

mathematical work in relativity. These ideas were used by 

Einstein in developing the general theory of relativity. As 

a mathematician Minkowski spent much of his time 

investigating quadratic forms and continued fractions. 

H. Minkowski (1864-1909)  
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As Minkowski wrote, ‘’Henceforth space by itself, and time by itself, are 

doomed to fade away into mere shadows, and only a union of the two will preserve 

an independent reality”. Space is different for different observers. Time is different for 

different observers. Space-time is the same for everyone 3 .  

However, there is a major difference between the Minkowskian space-time (3) 

and the usual four-dimensional vector space (2). These differences arise due to the 

appearance of the minus signs in the definition of the interval (or distance) between two 

events. Initially, Minkowski introduced the fourth coordinate in the form ictx =4 , which 

brings the interval to a Euclidian form. This representation is still used today, but in the 

following we shall study a modern version of the formalism, with an approach entirely 

based on the form (3) of the interval. Vector spaces in which the length of a vector is 

given by expressions of the form (3) are called pseudo-Euclidian spaces, in opposition 

with the Euclidian spaces in which the distance is defined by Eq. (2).  

3.3 Contravariant and covariant vectors 

In Minkowski's geometry, an event is identified by a world point in a four-

dimensional continuum. The Cartesian coordinates of the four-dimensional space are 

labeled from 0 to 3. The basic idea in the treatment of the space-time, which brings a 

great simplification of the formalism, is to introduce two types of coordinates for an 

event, with one set labeled by superscripts, and with the second labeled by 

subscripts. Accordingly, in the space-time we can speak about two different 

representations of vectors 4 .  

In the three-dimensional Euclidian space we have three-vectors like, for example, 

the position vector ( )zyxr ,,=
ρ

. By analogy, we shall define the position four-vector in 

the four-dimensional space in terms of the coordinates, which we denote by 

 ctx =0 , xx =1 , yx =2 , zx =3 . 

In the above equations the superscripts do not represent powers! 

Then the position vector in the space-time is 

( ) ( ) .,,,,,, 3210 iXzyxctxxxxX ≡=≡
ρ

 

The label (index) i  takes the values 3,...,0=i .  

A vector with superscript labels is called a contravariant vector, and its 

components are called contravariant components. Hence )(22 yxX ==  is the third 

contravariant component of the contravariant position vector. 
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A second representation of the four-dimensional position vector can be given in 

terms of its covariant components, defined as 

 ctx =0  , xxx −=−= 1

1 , yxx −=−= 2

2 , zxx −=−= 3

3 . 

The covariant components of the position vector are then 

 ( )
iXxxxxX ≡≡ 3210 ,,,

ρ
. 

Therefore xxxX −=−== 1

11  is the second covariant component of the position 

vector. 

Under the transformation of inertial frames S->S’, the coordinates transform as 

 ( ) ,
v

' 100








−= X

c
XX γ  ( ) ,

v
' 011









−= X

c
XX γ  ( ) ,' 22 XX =  ( ) 33 ' XX = , 

where  

2

2v
1

1

c
−

=γ . 

A set of four-numbers ( )3210 ,,, AAAA  which have the same 

transformation rules under a Lorentz transformation as the coordinates 

is called a contravariant four-vector.  

Thus any contravariant four-vector iA transforms as 

 ( ) ,
v

' 100








−= A

c
AA γ  ( ) ,

v
' 011









−= A

c
AA γ  ( ) ,' 22 AA =  ( ) .' 33 AA =   

Four vectors can also be generally written as ( )aAAA i ρρ
,0=≡  or ( )aAAA i

ρρ
−=≡ ,0 , 

where a
ρ

 is a tri-dimensional vector, called the spatial component of the four-vector. 0A  

is called the temporal component. 

The scalar product of two four-vectors is defined as 
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At this moment we shall introduce a very important convention, the Einstein 

summation convention, which states that  

an index that occurs twice in an expression  is summed over.  

This convention allows us to eliminate the ∑ symbol from a sum, also giving 

the opportunity of writing expressions containing complicate summations in a very 

compact form. Hence using the Einstein convention the scalar product of two vectors can 

be written in a very elegant and simple form as 

 .i

i BABA ≡⋅
ρρ

 

This is identical to ∑
=

≡⋅
3

0ν

ν
ν BABA

ρρ
. The product i

i BA  is a four-scalar, a quantity 

which is invariant under Lorentz transformations of the four-dimensional coordinate 

system.  The scalar product of the four-dimensional position vector X
ρ

with itself is given 

by 

 ( )

.                        

)()(                        

22222

22

3

3

2

2

1

1

0

0

zyxtc

zzyyxxtc

xxxxxxxxXXXX i

i

−−−

=−+−+−+

=+++==⋅
ρρ

 

The expression for the magnitude of the square of the position vector is the same as 

the interval, given by Eq. (3): 

 .2 j

j XXs =  

In Euclidian three-space, the squared interval between points, or the (differential) 

distance is 

 ,2222 dzdydxds ++=  

and is invariant under rotations and translations of the rectangular Cartesian coordinate 

axes. 
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In four dimensions, an event is a point in space-time. By analogy with three-space, 

the interval between events in four-space is the “distance” 2
ds  defined as 

 ,3

3

2

2

1

1

0

0

2
dxdxdxdxdxdxdxdxdxdxds +++== α

α   

or 

 222222 dzdydxdtcds −−−= .     (4) 

2
ds is invariant under three-dimensional rotations and translations of the rectangular 

coordinate axes and with respect to the Lorentz transformation in the plane ( )xct, . The 

property of Lorentz invariance is also true for all scalar products of four-vectors in the 

four-dimensional space-time. 

An arbitrary four-vector ( )aAA
ρρ

,0=  can be represented by a displacement vector in 

space-time. Hence we can classify all four-vectors as 

-time-like: ( ) ,02202 >−== aAAAA
k

k

ρ
  

-null: ( ) ,02202 =−== aAAAA
k

k

ρ
 

-space-like: ( ) 02202 <−== aAAAA
k

k

ρ
. 

If the vector A
ρ

 represents the four-space trajectory of a free particle, then A
ρ

 could be 

only time-like. If A
ρ

 were null, then it could only corresponds to a pulse of light or the 

trajectory of a massless particle, such as the photon or the neutrino. However, if A
ρ

 were 

to be space-like, then it could not correspond to any particle trajectory.  

3.4 The four-dimensional velocity and acceleration 

From the ordinary three-dimensional velocity vector one can form a four-vector. The 

four-velocity of a particle is the vector  

 
ds

dx
u

i
i = . 

To find its components we note first that according to Eq. (3)  

 
2

2v
1

c
cdtds −= ,  
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where v is the ordinary three-dimensional velocity of the particle.  

Thus 

 

2
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Therefore 

 


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








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





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Note that the four-velocity is a dimensionless quantity. The contravariant and 

covariant components of the four-velocity are not independent. It is easy to show that 

 1=i

i
uu . 

Similarly to the definition of the four-velocity, the quantity 

 
2

2

ds

xd
w

i
i =   

is called four-acceleration. The four-velocity and four-acceleration vectors are 

perpendicular: 

 0=i

i wu . 

Exercise. Prove the relations  1=i

i
uu  and 0=i

i wu  satisfied by the four-velocity and 

accelerations vectors. 

Exercise. By using the Lorentz transformation properties of the four-velocity find the 

special relativistic law of the composition of the velocities.   

3.5 Four-tensors 

A four-dimensional tensor (four-tensor) of the second rank (order) is 

a set of sixteen quantities, ikA , which under coordinate transformation 

transform like the products of components of two four-vectors. We 

similarly define four-tensors of higher rank (order) 6 .  
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The components of a second rank tensor can be written in three forms:  

-covariant ikA ,  

-contravariant ikA and  

-mixed i

kA .  

The connection between the different types of components is determined 

from the general rule: raising or lowering a space index (1, 2, 3) changes 

the sign of the component, while raising or lowering the time index (0) 

does not.  

Thus: 

 00

00 AA = , 01

01 AA −= , 11

11 AA = , 

 000

0 AA = , 011

0 AA = , 010

1 AA −= , 111

1 AA −=  etc. 

Under purely spatial transformations the nine quantities 11A , 12A , … form a 

three-tensor. The three components 01A , 02A , 03A  and the three components 10A , 20A , 
30A constitutes three-dimensional vectors, while the component 00A is a three-

dimensional scalar. 

A tensor lmA is said to be symmetric if  

 mllm AA = , 

and antisymmetric if  

 mllm AA −= . 

In an anti-symmetric tensor all the diagonal components (that is the components 

,..., 1100 AA are zero, since, for example, we must have 0000 AA −= . 

Example. Find the law of transformation of the components of a symmetric four-tensor 
ikA  under Lorentz transformations. 

A second-order tensor transforms like the product of two four-vectors,  

 kiIk
CBA ~ , 
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 kiIk
CBA ''~' , 

 

where  

  

 







−= 100 v

' B
c

BB γ , 







−= 011 v

' B
c

BB γ , 

 

 







−= 100 v

' C
c

CC γ , 







−= 011 v

' C
c

CC γ . 

 

 Consequently, for a symmetric second order tensor we obtain the following 

transformation laws of the components 

 

 0000 ''~' CBA , 

 









−








− 1010200 vv

~' C
c

CB
c

BA γ  









+−− 11

2

2
011000200 vvv

~' CB
c

CB
c

CB
c

CBA γ , 

 

 













+−− 321321321321

11100100

11

2

2
011000200 vvv

~'

AAAA

CB
c

CB
c

CB
c

CBA γ , 

  

 







+−= 11

2

2
0100200 vv

2' A
c

A
c

AA γ . 

 

 Similarly for the other components we obtain 

 

 







−−








+= 110001

2

2
201 vvv

1' A
c

A
c

A
c

A γ , 





−= 120202 v

' A
c

AA γ , 

 

 







+−= 00

2

2
0111211 vv

2' A
c

A
c

AA γ ,  







−= 021212 v

' A
c

AA γ , 

 

 ,2222' AA =  3333' AA =  etc. 
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Exercise. Find the law of transformation of the components of an anti-symmetric four-

tensor ikA  under Lorentz transformations. 

In every tensor equation, the two sides must contain identical and identically 

placed (i.e. above or below) free indices (as distinguished from dummy (summation) 

indices). The free indices in tensor equations can be shifted up or down, but this must be 

done simultaneously in all terms in the equation. Equating covariant and 

contravariant components of different tensors is not allowed, such an 

equation, even if it happened by chance to be valid in a particular 

reference system, would be violated on going on another frame. 

From the tensor components ikA  one can form a scalar by taking the sum 

 .3

3

2

2

1

1

0

0 AAAAA
i

i +++=  

This sum is called the trace of the tensor and the operation for obtaining it is 

called contraction.  

The formation of the scalar product of two vectors is a contraction operation: it is 

the formation of the scalar l

l
BA from the tensor k

l
BA . In general, contracting on any pair 

of indices reduces the rank of the tensor by 2. For example, i

kliA is a tensor of second 

rank, ki

k BA is a four-vector, ik

ikA is a scalar etc. 

The unit four-tensor i

kδ  satisfies the condition that for any four-vector iA  

 .kik

i AA =δ  

The components of this tensor are 

 




≠

=
=

ki

ki
k

i
 if ,0

 if ,1
δ . 

Its trace is 4=k

kδ . 

By raising one index or lowering the other in i

kδ  we can obtain the contra or 

covariant tensor ikg  or ikg , which is called the metric tensor. The tensors ikg  and ikg  

have identical components, which can be written as a matrix: 
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

















==

1- 0  0  0

0  1- 0  0

0  0  1- 0

0  0  0   1

ik

ik
gg . 

The index i  labels the rows and k  the columns in the order 3,2,1,0 . It is clear that 

 i

k

ik AAg = , i

k

ik
AAg = . 

The tensors i

kδ , ikg , ikg  are special in the sense that their components are the 

same in all coordinate systems. The completely anti-symmetric tensor of fourth rank iklm
e  

has the same property. This is the tensor whose components change sign under 

interchange of any pair of indices and whose non-zero components are 1± . From the 

anti-symmetry it follows that all components in which two indices are the same are zero, 

so that the only non-vanishing components are those for which all four indices are 

different. We set 

 10123 +=e , 

and hence 10123 −=e . Then all the other non-vanishing components iklm
e are equal to +1 

or -1, according as the numbers mlki ,,, can be brought to the arrangement 0,1,2,3 by an 

even or an odd number of transpositions. Hence the formal definition of the totally anti-

symmetric four-tensor is 

 

( )
( )







−

=

otherwise 0

3 2 1 0 ofn permutatio oddan  )(for  ,1

3 2 1 0 ofn permutatioeven an  )(for  ,1

iklm

iklm

eiklm   

Some components are explicitly shown below: 

 13012120321300123 −=−=== eeee , 

 0023011121120 === eee . 

The number of such components is 4!=24. Thus 

 .24−=iklm

iklm
ee  

With respect to rotations of the coordinate system, the quantities iklm
e behave like 

the components of a tensor; but if we change the sign of one or three of the coordinates 

the components iklm
e , being defined as the same in all coordinate systems, do not change, 
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whereas some of the components of a tensor should change sign. Thus iklm
e is, strictly 

speaking, not a tensor, but rather a pseudotensor.  

Pseudotensors of any rank, in particular pseudoscalars, behave 

like tensors under all coordinate transformations except those that 

cannot be reduced to rotations, i.e. reflections, which are changes in sign 

of the coordinates that are not reducible to a rotation. 

The four gradient of a scalar φ  is the four-vector 

 .,
1

,,,
1









∇

∂

∂
=









∂

∂

∂

∂

∂

∂

∂

∂
=

∂

∂
φ

φφφφφφ

tczyxtcx
i

 

The derivatives are the covariant components of the four-vector. The differential 

of a scalar, 

 i

i
dx

x
d

∂

∂
=

φ
φ  

is also a scalar; from its form (scalar product of two four-vectors) it follows that 
i

x∂

∂φ
are 

the components of a covariant vector. The divergence of a four-vector, 
i

i

x

A

∂

∂
 , in which 

we differentiate the contravariant components iA , is a scalar. 

 The totally anti-symmetric four-tensor iklme  allows the introduction of an 

important mathematical operation, called the Hodge * (star) or duality transformation. 

The * operation transforms tensors of rank p into tensors of rank )( pn − , where n is the 

dimension of the space according to the general  rule 

 
( )

npp

nppp

iii

iiiiiiii Fe
pn

F
...

.........

* 21

12121 !

1
++

+−
= . 

 The Hodge dual of a second rank tensor µνF  is given, in the four-dimensional 

space-time, by 

 .
2

1* µν
αβµναβ FeF =  

In the same four-dimensional geometry, the Hodge dual of a third order tensor µνσF  

is  
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 .* βµν
αβµνα FeF =  

3.6 Integration in the four-dimensional space-time 

In the three-dimensional space one can extend integrals over a volume, a surface or a 

curve. In the four-dimensional space there are four types of integration: 

a) Integral over a curve in four-space. The element of integration is the line 

element, i.e. the four-vector i
dx . 

b) Integral over a two-dimensional surface in four-space. In three space the 

projection of the area of the parallelogram formed from the vectors rd
ρ

and 'rd
ρ

on 

the coordinate planes βα xx are ''

αββααβ dxdxdxdxdf −= . Analogously, in four-

space the infinitesimal element of surface is given by the anti-symmetric tensor of 

second rank 

ikkiik dxdxdxdxdf '' −= . 

In the three-dimensional space one uses as surface element in place of the tensor 

αβdf  the vector αdf  dual to the tensor αβdf : 

βγαβγα dfedf
2

1
= . 

Exercise. Show that the components of the vector αdf  are the components of the vector 

product of rd
ρ

and 'rd
ρ

, 'rdrdfd
ρρρ

×= . 

Generally in three dimensions αdf  is a vector normal to the surface element 

and equal in absolute magnitude to the area of the element. In four-space we cannot 

construct such a vector, but we can construct the tensor ikdf *  dual to the tensor ikdf , 

lm

iklmik
dfedf

2

1* = . 

Geometrically it describes an element of surface equal to and normal to the element 

of surface ikdf . 

c) Integral over a hypersurface, i.e. over a three-dimensional geometric object. 

In the three dimensional space the volume of the parallelepiped spanned by three 

vectors is equal to determinant of the third rank formed from the components of 

the vectors. One obtains analogously the projections of the volume of the 

parallelepiped (i.e. the areas of the hypersurface) spanned by three four-vectors 
iii dxdxdx '',', ; they are given by the determinant 
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lll

kkk

iii

ikl

dxdxdx

dxdxdx

dxdxdx

dS

''   '  

''  '  

''  '  

= , 

which forms a tensor of rank 3, anti-symmetric in all three indices. As element of 

integration over the hypersurface it is more convenient to use the four-vector i
dS , dual to 

the tensor ikl
dS : 

klm

iklmi
dSedS

6

1
−= , i

iklmklm dSedS = . 

Here  

1230
dSdS = , ,0231 dSdS = … 

Geometrically, i
dS  is a four-vector equal in magnitude to the areas of the 

hypersurface element, and normal to this element (i.e. perpendicular to all lines drawn in 

the hypersurface element). In particular, dxdydzdS =0 , i.e. it is the element of the three-

dimensional volume dV , the projection of the hypersurface element on the hyperplane 

=0
x constant. 

Exercise. Show that the components of the four-vector i
dS are given by 

( )210310320321 ,,, dxdxdxdxdxdxdxdxdxdxdxdx . 

d) Integral over a four-dimensional volume; the element of integration is the 

scalar 

.3210 cdtdVcdtdxdydzdxdxdxdxd ===Ω  

The element is a scalar; it is obvious that the volume of a portion of four-space is 

unchanged by a rotation of the coordinate system. 

Analogous to the theorems of Gauss and Stokes in three-dimensional vector 

analysis, there are theorems that enable us to transform four-dimensional integrals. 

The integral over a closed hypersurface can be transformed into an integral over 

the four-volume contained within it by replacing the element of integration idS  by the 

operator 

 
ii

x
ddS

∂

∂
Ω→ . 
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For example, for the integral of a vector iA  we have  

 ∫ ∫ Ω
∂

∂
= d

x

A
dSA

i

i

i

i . 

This formula is the generalization of the Gauss theorem. An integral over a two-

dimensional surface is transformed into an integral over the hypersurface spanning it by 

replacing the element of integration *

ikdf  by the operator 

 
ikkiik

x
dS

x
dSdf

∂

∂
−
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For example, for the integral of the anti-symmetric tensor ikA we have 
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The integral over a four-dimensional closed curve is transformed into an integral 

over the surface spanning it by the substitution: 

 
k

kii

x
dfdx

∂

∂
→ . 

Thus for the integral of a vector we have  

 ∫ ∫ ∫ 



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∂
=

∂
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=
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Finally we shall prove the following important  

Theorem. If the four-vector iA is divergence-free, 0=
∂

∂
i

i

x

A
, then ∫S i

i
dSA is independent 

of the space-like surface S  at all times. 

From the Gauss theorem we obtain first 

.0=Ω
∂

∂
=∫ ∫ d

x

A
dSA

i

i

i

i  

If we now take S to consist of any two space-like surfaces 1S  and 2S , and if we 

assume iA  approaches zero sufficiently rapidly, we can neglect the contribution to S of 

the infinite cylinder connecting 1S  and 2S .Thus we obtain  



 16

 

.0
12

=−= ∫∫ ∫ S
i

i

S
i

i

i

i
dSAdSAdSA  

Hence ∫S i

i
dSA is independent of the space-like surface S  at all times. For 

example, by choosing the hypersurface  00 =x  we obtain 

 .0

0

0
constdVAdSAdSA

VS
i

i === ∫∫ ∫  

3.7 The geometrical meaning of the metric tensor 

Previously we have shown that the squared interval between two events in a 

Minkowskian space-time can be written as  

 222222 dzdydxdtcds −−−= . 

This expression is a special case of a more general result used in differential geometry 

for a path length 7 . The general form for the length of a path at a point P in a vector 

space of n  dimensions is  

 νµ
µν dxdxgds =2 ,       (6) 

where both repeated indices µ  and ν are summed from zero up to 1−n . Vector 

spaces in which such a representation is possible are called Riemannian 

spaces. 

The expression (6) for 2
ds is known as a metric and µνg  is called the metric tensor 8 . 

The metric tensor has the following general properties: 
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1. µνg  is a n -row ×  n -column array of coefficients. 

2. The values of the coefficients may depend on the position of the 

point P. 

3. The nature of the metric tensor may depend on the nature of the 

vector space and the choice of the coordinate system. 

4. The metric tensor is symmetric, νµµν gg = . 

Let’s try to obtain the form of the metric tensor appropriate to the Euclidian space. In 

such a space 

 ( ) ( ) ( ) .
2322212 dxdxdxds ++=         (7) 

It is then easy to check that Eq. (6) reduces to Eq. (7) if and only if first 0=µνg  for 

cases where νµ ≠  (in other words the array of coefficients has to form a diagonal 

matrix) and second, if  

 .1332211 === ggg   

These two conditions are in fact just the definition of either the Kronecker delta 

symbol µνδ  or of the unit matrix. That is, we may write the metric tensor for the 

Euclidian three-space as either 

 ,µνµν δ=g  

or as 

 
















=

1  0  0

0  1  0

0  0  1

µνg . 

In a more compact notation we can also write ( )1,1,1diag=µνg . 

Now let’s turn to the Minkowski space. In this space the metric tensor has a special 

notation, being usually denoted by µνη . Again, µνη  must be diagonal and the diagonal 

elements must satisfy the conditions 

 100 =η , 111 −=η , 122 −=η , 133 −=η , 
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or  

 ( )1,1,1,1diag −−−=µνη . 

The metric tensor acts as a raising or lowering operator on the vector 

indices in the four-space, transforming a contravariant component to a 

covariant one and vice-versa, by means of the relation 

 .ν
µνµ η XX =  

Thus 

 ,00

ν
νη XX =  ,0

000 XX η=  ,0

0 XX =  

 ,11

ν
νη XX =  ,1

111 XX η=  ,1

1 XX −=  

etc. 

Notes 

1 The mathematical theory of the vector spaces and differential geometry are 

indispensable tools for the study of modern physical theories like quantum mechanics and 

relativity. A good introduction to these fields of mathematics and some of their physical 

applications can be found in S. Hassani, Mathematical physics: a modern introduction to 

its foundations, New York, Springer, 1999.   

2 For a discussion of vector spaces see also W. D. McComb, Dynamics and relativity, 

Oxford, Oxford University Press, 1999. 

3 At an elementary level the properties of the space-time continuum are presented in E. F. 

Taylor and J. A. Wheeler, Space-time physics, W. H. Freeman and Company, New York, 

2001, where the physical meaning of the relativistic interval and of the light cone with 

many applications is discussed in great detail. 

4 The presentation of the properties of the covariant and contravariant vectors follows W. 

D. McComb, Dynamics and relativity, Oxford University Press, Oxford, 1999 and L. D. 

Landau and E. M. Lifshitz, The classical theory of fields, Oxford, Butterworth-

Heinemann, 1998. 
5 The definitions of the proper line element, four-velocity and four-acceleration follow 

the treatment in L. D. Landau and E. M. Lifshitz, The classical theory of fields, 

Pergamon Press, Oxford, 1975; see also W. D. McComb, Dynamics and relativity, 

Oxford, Oxford University Press, 1999. 
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6 The presentation of the properties of the special relativistic four-vectors and tensors is 

based on L. D. Landau and E. M. Lifshitz, The classical theory of fields, Pergamon Press, 

Oxford, 1975 
7 The metric tensor and its properties are discussed in great detail, from a physical point 

of view, in L. D. Landau and E. M. Lifshitz, The classical theory of fields, Pergamon 

Press, Oxford, 1975 and W. D. McComb, Dynamics and relativity, Oxford University 

Press, Oxford, 1999. For a more advanced mathematical approach see S. Hassani, 

Mathematical physics: a modern introduction to its foundations, Springer, New York, 

1999.   

 

 

   

 

     

 

 

 

  

 

  

 


